ترانسفورماتور

ترانسفورماتور وسیله‌ای است که انرژی الکتریکی را بین دو یا چند سیم‌پیچ و از طریق القای الکترومغناطیسی منتقل می‌کند. به این صورت، یک جریان متغیر در سیم‌پیچ اولیه ترانسفورمر موجب تولید میدان مغناطیسی متغیر در هسته ترانسفورماتور گردیده و تاثیر میدان متغیر مغناطیسی منجر به ایجاد ولتاژ در سیم‌پیچ ثانویه می‌شود.

انرژی الکتریکی را می‌توان بین دو سیم‌پیچ (کویل) بدون اتّصال فلزی بین دو مدار از طریق میدان مغناطیسی منتقل کرد. در سال ۱۸۳۱، قانون القای فارادی این اثر را توصیف کرد. ترانسفورمرها برای افزایش یا کاهش ولتاژ متناوب در پروژه‌های برق استفاده می‌شود.

در سال ۱۸۸۵، از زمان اختراع اولین ترانسفورماتور پایدارِ ثابت از ترانسفورماتورها برای انتقال، توزیع و بهره‌برداری از انرژی الکتریکی جریان متناوب استفاده می‌شد.طیف ترانسفورمرها از نظر اندازه از ترانسفورماتورهای کم‌تر از یک سانتیمتر مکعب تا واحدهای اتصال شبکهٔ برقی گسترش یافته‌است که صدها تُن وزن دارد.

یکی از کاربردهای مهم ترانسفورماتورها کاهش جریان در خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادی‌های الکتریکی دارای مقاومت الکتریکی هستند. این مقاومت می‌تواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطهٔ مستقیم دارد و بنابراین با کاهش جریان می‌توان تلفات را به‌شدّت کاهش داد. با افزایش ولتاژ در خطوط انتقال به‌همان نسبت جریان خطوط کاهش می‌یابد و به‌این ترتیب هزینه‌های انتقال انرژی نیز کاهش می‌یابد، البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیلهٔ ترانسفورماتورها کاهش می‌یابد تا به میزان استاندارد مصرف برسد. به‌این ترتیب، بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی وجود ندارد.

ترانسفورماتورها یکی از پربازده‌ترین تجهیزات الکتریکی هستند؛ به‌طوری‌که در برخی ترانسفورماتورهای بزرگ بازده به ۹۹٫۷۵٪ نیز می‌رسد. امروزه، از ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی استفاده می‌شود. از یک ترانسفورماتور کوچک که در یک میکروفون قرار دارد تا ترانسفورماتورهای غول‌پیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند، اما در طراحی و ساخت متفاوت هستند.

+ منبع : ویکی پدیا – دانشنامه آزاد

اصول پایه‌ای ترانسفورماتور

به‌طوری‌کلّی یک عملکرد ترانسفورماتور بر دو اصل استوار است:

جریان الکتریکی متناوب می‌تواند میدان مغناطیسی متغیر پدید آورد.

میدان مغناطیسی متغیر در یک سیم‌پیچ می‌تواند موجب به وجود آمدن جریان الکتریکی متناوب در یک سیم‌پیچ دیگر شود.

ساده‌ترین طراحی برای یک ترانسفورماتور در شکل ۲ آمده‌است. جریان سیم‌پیچ اولیه موجب به‌وجود آمدن یک میدان مغناطیسی می‌گردد. هر دو سیم‌پیچ اولیه و ثانویه روی یک هسته که دارای خاصیت نفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شده‌اند. بالا بودن نفوذپذیری مغناطیسی هسته موجب می‌شود تا بیش‌تر میدان تولیدشده توسط سیم‌پیچ اولیه از داخل هسته عبور کرده و به سیم‌پیچ ثانویه برسَد.

قانون القا

میزان ولتاژ القاء شده در سیم‌پیچ ثانویه را می‌توان به وسیله قانون فارادی به‌دست‌آورد:VS=NSdΦdt

{\displaystyle V_{S}=N_{S}{\frac {d\Phi }{dt}}}

در فرمول بالا، VS ولتاژ لحظه‌ای، NS تعداد دورهای سیم‌پیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور سیم‌پیچ می‌گذرد. با توجه به این معادله تا زمانی که شار درحال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند، ولتاژ لحظه‌ای اولیه یک ترانسفورماتور ایدئال از معادله زیر به‌دست می‌آید:VP=NPdΦdt

{\displaystyle V_{P}=N_{P}{\frac {d\Phi }{dt}}}

و با توجه به تعداد دور سیم‌پیچ‌های اولیه و ثانویه و این معادله ساده می‌توان میزان ولتاژ القایی ثانویه را به‌دست‌آورد:VSVP=NSNP

{\displaystyle {\frac {V_{S}}{V_{P}}}={\frac {N_{S}}{N_{P}}}}
شکل۲: یک ترانسفورماتور کاهندهٔ آرمانی و مسیر عبور شار در هسته

معادله توان

اگر سیم‌پیچ ثانویه یک‌بار متصل شده باشد، جریان در سیم‌پیچ ثانویه جاری خواهد شد و به‌این ترتیب توان الکتریکی بین دو سیم‌پیچ منتقل می‌شود. اگر ترانسفورماتور ایدئال بدون تلفات کار کند و تمام توانی که به ورودی وارد می‌شود، به خروجی برسد و به این ترتیب توان ورودی و خروجی برابر شود، در این حالت داریم:Pincoming=IPVP=ISVS=Poutgoing

{\displaystyle P_{\mathrm {incoming} }=I_{P}V_{P}=I_{S}V_{S}=P_{\mathrm {outgoing} }}

و همچنین در حالت ایدئال خواهیم داشت:VSVP=NSNP=IPIS

{\displaystyle {\frac {V_{S}}{V_{P}}}={\frac {N_{S}}{N_{P}}}={\frac {I_{P}}{I_{S}}}}

بنابراین، اگر ولتاژ ثانویه از اولیه بزرگ‌تر باشد، جریان ثانویه به‌همان نسبت از جریان اولیه باید کوچک‌تر باشد. در واقع، همان‌طور که در بالا اشاره شد، بیش‌تر ترانسفورماتورها بازدهٔ بسیار بالایی دارند و به‌این ترتیب نتایج به‌دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.

مباحث فنی

تعاریف ساده‌شده در بالا بسیاری از مباحث پیچیده درباره‌ی ترانسفورماتورها را در نظر نمی‌گیرد.

در یک ترانسفورماتور ایدئال، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیم‌پیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودی‌های اولیه ترانسفورماتور اعمال می‌شود، برای به‌وجود آوردن شار در مدار مغناطیسی هسته باید جریانی کوچکی در سیم‌پیچ اولیه جاری شود. از آن‌جایی که در ترانسفورماتور ایدئال هسته فاقد مقاومت مغناطیسی است، این جریان قابل چشم‌پوشی خواهد بود و این در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.

تپ‌چنجر 

لغزانه ترانسفورماتور یا تپ‌چنجر (به انگلیسی: Tap changer) ابزاری است که با لغزیدن و جابجا شدن بر روی سیم پیچ ترانسفورماتور تعداد دور سیم پیچ در ترانسفورماتورها را به گونه‌ای تغییر می‌دهد تا ولتاژ پایانه را به مقدار خواسته شده تنظیم کند.

سرسیم‌بندی لغزانه‌ها
لغزانه‌ها بروی سیم پیچی که ار نظر اقتصادی و فنی مقرون به صرفه باشد جای می‌گیرد. لغزانه‌ها بیشتر بروی اتصال ستاره یا در سوی فشار قوی کار گذاشته می‌شوند. اصولاً لغزانه‌ها به سه راه زیر به کار گرفته می‌شوند:

۱- لغزانه‌های سه فاز بروی سیم پیچ‌های با اتصال ستاره

۲- لغزانه‌های سه‌فاز که بروی سیم پیچ‌های با اتصال مثلث قرار می‌گیرند. در این حالت عایق بندی و جداگری هروسپ و کامل بین فازها نیاز است و به سه دستگاه لغزانه نیاز داریم که با یک سازوکار حرکتی همسان و هماهنگ کار کنند.

۳-لغزانه‌های تک‌فاز که بروی ترانسفورماتورهای تک فاز یا سه فاز

انواع
لغزانه‌ها با توجه به نوع کاربرد به دو دسته لغزنده زیر بار (On Load ) و لغزنده در بی باری (Off Load) بخش‌بندی می‌شوند. لغزانه‌های غیرقابل تغییر زیر بار دارای ساختمان ساده‌ای بوده و برای جابجایی آن حتماً باید ترانسفورماتور توان را از زیر بار بیرون آورد و چرخه را باز نمود. جابجایی این نوع لغزانه‌ها کمابیش با توجه به نیاز و هماهنگ با کاهش و افزایش بار در فصل‌های گوناگون سال انجام می‌گیرد.

+ ادامه از ویکی پدیا – دانشنامه آزاد